Maximal Subgroups of Symmetric Groups

نویسندگان

  • Martin W. Liebeck
  • Aner Shalev
چکیده

A theorem of O’Nan and Scott [6]; [2, Chapter 4] restricts the possibilities for maximal subgroups of finite symmetric groups: they are of six types of which the first four are explicitly known, the fifth involves a finite simple group, and the sixth an action of a simple group. This result, in conjunction with the Classification of Finite Simple Groups, has a number of consequences. In particular, it has been determined which subgroups on the list are actualy maximal [3]. In the infinite case, things are different: the O’Nan–Scott theorem does not hold in general, and the symmetric group has subgroups which lie in no maximal subgroup. However, versions of the O’Nan–Scott theorem are known for some classes of groups, and a number of results are known about maximal subgroups [4, 5]. Sometimes the precise form of the result depends on set-theoretic assumptions [1]. The project will involve summarising known results and working detailed examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifying fuzzy normal subgroups of finite groups

In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.

متن کامل

Triple factorization of non-abelian groups by two maximal subgroups

The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...

متن کامل

Subgroups of Infinite Symmetric Groups

This paper and its sequel [17] deal with a range of questions about the subgroup structure of infinite symmetric groups. Our concern is with such questions as the following. How can an infinite symmetric group be expressed as the union of a chain of proper subgroups? What are the subgroups that supplement the normal subgroups of an infinite symmetric group? What are the maximal proper subgroups...

متن کامل

On the type of conjugacy classes and the set of indices of maximal subgroups

‎Let $G$ be a finite group‎. ‎By $MT(G)=(m_1,cdots,m_k)$ we denote the type of‎ ‎conjugacy classes of maximal subgroups of $G$‎, ‎which implies that $G$ has exactly $k$ conjugacy classes of‎ ‎maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates‎ ‎of maximal subgroups of $G$‎, ‎where $m_1leqcdotsleq m_k$‎. ‎In this paper‎, ‎we‎ ‎give some new characterizations of finite groups by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 75  شماره 

صفحات  -

تاریخ انتشار 1996